魔兽世界多玩|魔兽世界 血精灵

亿信华辰

连续3年稳坐商务智能应用榜首
与此同时,亿信华辰在数据治理领域荣登五强
首页行业资讯数据治理

超越法规遵从:从数据治理创造业务价值

时间:2019-02-28来源:亿信华辰浏览数:42


数据治理已经成为金融服务的最前沿,因为在过去十年结束时,这种垂直行业被越来越多的监管,惩罚和监管实体所淹没。严格的合规性要求不仅要求组织对数据负责,还要追溯可追溯性,来源和可审计性。

对这些驱动因素的最常见反应是从整个组织部署的迷宫信息管理系统中为特定法规建立孤岛,这通常会导致:

  • 具有有限寿命和可行性的点解决方案
  • 从不同来源到同一问题的不同答案
  • 模糊的数据质量和血统
  • 缺乏对其他法规和业务要求的敏捷性

像语义技术这样的新兴技术正在改变合规性和数据治理,不仅可以规避这些问题,还可以提高治理收益,从而影响整个企业中数据驱动流程的?#36127;?#27599;个方面。通过将治理嵌入到数据管理和业务功能中,组织可以超越单纯的法规遵从性,从而大大?#32435;?#27450;诈管理,产品开发,客户360视图等等。

使用语义技术实现统一的治理策略和实践,将它们纳入业务功能,并在如此精细的层面支持IT系统,这些管理良好,可信赖的数据成为简单使用数据的隐含副产品。

行业标准不断增长

基于模型?#27169;?#22522;于标准的数据治理语义方法正迅速成为整个金融领域的行业规范。这方面的一些最普遍和开拓性的努力是由企业数据管理委员会(EDMC)精心策划?#27169;?#35813;委员会是私营公司,供应商和公共部门专家的联盟,他们正在部署语义技术以应对法规和必要条件的涌入。这个纵向的数据驱动实践。

语义方法的关键在于利用描述数据及其要求的模型。与治理相关的内容包括元数据,属性,法规要求,管理权协议,基于角色的访?#23454;取<负?#25152;有关于数据及其使用的内容都可以通过这些模型来描述,这些模型还?#25104;?#21040;业务术语表和词汇表,以确保?#34892;?#27835;理所必需的术语和定义的统一连续性。

EDMC即将完成金融业业务本体论(FIBO),这是一个行业范围内的组织和监管实体共享的概念和意义的语义模型。FIBO旨在协调各个来源的数据,以简化监管报告流程,因此部署它的人每次都能得到相同问题的相同答案,无论数据源自何处。EDMC还创建了数据管理能力评估模型(DCAM),该模型为治理方面,其标准和基准提供?#21496;?#20307;定义,语义方法可以为组织做好准备。

用智能数据湖补充筒仓

治理语义方法的价值不仅包括协调整个金融行业,其组织及其各种数据管理系统的含义,还包括轻松描述数据的各个方面及其在业务术语中的重要性。这一事实是其最重要的优势之一,因为它拓宽了数据消费的业务受众。此外,当人们将这种恩惠与语义技术和工具(例如语义数据湖泊)的融合相结合时,治理及其优?#26222;?#27491;从监管合规性反应转变为扩展数据业务价值的主动手段。语义数据湖的利用代表了基于标准的治理方法提供的这些好处。
利用上述语义方法丰富传统数据湖存储库(例如Hadoop),使组织能够将单个存储库替换为所有数据的单个存储库,这些数据库根据相关因素(如治理策略,必需访问,一致元数据,定义)进行语义标记。和属性。通过确保所有数据都遵循实际上不断扩展以包含新数据类型和来源的不断发展的语义模型,组织现在可以根据治理协议以一致的方式管理它们。

从治理中创造商业价值

将治理产生的价值扩展到超出监管合规范围的企业领域的可能性?#36127;?#26159;无限的。其中一个最令人信服的例?#30001;?#21450;转型,这是数据准备的一个关键方面。这种?#27835;?#30340;常见先决条件的非语义方法涉及编写数据代码。语义技术可以将转换过程合并到其底层模型中,以自动生成代码。因此,治理模型可以?#21592;?#20854;他方法更方便和简化的方式直接影响运营。采集数据,准备数据并最终从中?#27835;?#25110;创建行动所需的步骤数量复杂化,从而减少了错误点和治理实践的复杂性。

这种管理数据的整体方法将g 
overnance的主要输出质量,可信赖的数据扩展到企业选择应?#30431;?#30340;任何用例。这些技术核心的不断发展的语义模型有助于实现敏捷性,可以轻松应对未来的监管要求以及业务监管要求。这种主动的治理语义方法也与?#27835;?#30452;接相关,因为用户可以询问他们想要的任何数据问题。基础技术能够?#21592;?#20851;系模型更灵?#30591;?#26356;省时的方式收集数据与其元素之间的关系。

?#21830;?#24615;和血统

企业从数据治理的语义方法中获得的价值的直接性受到围?#24179;?#34701;的无数法规的提升。具体而言,基于标准的环境为数据沿袭目的提供了一种出处,这对审计法规遵从性至关重要。?#25104;?#21040;监管要求并

企业可以将其语义模型链接到多?#20013;?#24335;的通信,包括交易,电子邮件,在线活动,电话记录,消息,内部系统和其他形式,以根据法规跟踪数据沿袭。数据来源,法规?#25104;?#21644;基于法规的基于角色的数据访问的组合提供了一种?#33539;?#21644;评估遵守法规遵从性的整体方法。此外,语义模型的综合方法促进了这些合规性方面,语义模型是基于标准的数据治理方法的核心。

晋升机会

最初,数据治理被视为一种保护企业资产免受与违规相关的处罚的手段。治理的语义方法不仅包括它,而?#19968;?#21253;括源自该学科所产生的可靠数据质量的许多其他优点,从而超越了该实用程序。对于治理语义技术的实施至关重要的意义协调极大地提高了企业范围内的敏捷性。此外,描述数据在业务方面的重要性的能力加强了业务受众与提供竞争优势的资源之间的联系。所有这些因素,以及EDM委员会的努力和基于标准的方法的普及,都证明了语义学的现实,



快乐分享
? 2019 ESENSOFT ?#26412;?#20159;信华辰软件有限责任公司| 版权所?#26657;?a href="http://www.miitbeian.gov.cn" target="_blank" rel="nofollow">京ICP备07017321号 京公网安备11010802016281号|免责声明
魔兽世界多玩 极速6合平特规律 中国福利彩票官网 江西新时时开奖结果 湖南体彩足彩半全场 快3走势图甘肃 香港赛马一期计划 上海时时网计划 秒速赛计划软件万能码 九龙一肖平特 今日排列三预测总汇